
Getting Started with
Measurement Studio
for Visual C++
Getting Started with Measurement Studio for Visual C++

July 2001 Edition
Part Number 323063A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,
China (ShenZhen) 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Malaysia 603 9596711,
Mexico 5 280 7625, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com.

Copyright © 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL

INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply
regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought
within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond
its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product; owner’s
abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable
control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, DataSocket™, LabVIEW™, Measurement Studio™, NI-488.2,™ NI-DAQ™, National Instruments™, NI™, ni.com™, and PXI™ are
trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Getting Started with Measurement Studio for Visual C++

Contents

About This Manual
Conventions ...vii
Related Documentation..viii

Chapter 1
National Instruments Measurement Studio for Visual C++

System Requirements ..1-1
Installing ..1-2

Installation Tips ...1-2
Measurement Studio for Visual C++ Overview ..1-2

Measurement Studio for Visual C++ Classes..1-3
Exception Classes ...1-7
MFC Inheritance in Measurement Studio Classes1-7

Measurement Studio for Visual C++ ActiveX Controls1-7
Measurement Studio for Visual C++ Wizards ..1-8

Chapter 2
Getting Started with ActiveX Controls

What Is an ActiveX Control?...2-1
What Are Objects?...2-2

Working with Collections..2-3
Managing Collections..2-3

What Are Properties and How Do I Get and Set Them? ...2-3
Changing Properties Programmatically...2-4
Using Enumerated Constants ..2-5

What Are Methods and How Do I Call Them? ...2-6
Calling Methods ..2-6

What Are Events and How Do I Respond to Them?...2-7
How Do I Benefit from Using the Measurement Studio for Visual C++

ActiveX Controls? ..2-8

Chapter 3
Measurement Studio for Visual C++ Tutorial

Creating the Dialog Box ..3-1
Modifying the Controls..3-3
Adding Member Variables for the Controls ..3-4
Adding Member Functions for the Controls..3-4

Contents

Getting Started with Measurement Studio for Visual C++ vi ni.com

Adding Code to the Project ... 3-5
Adding More Advanced Features to the Project ... 3-6
Reviewing the Completed Project ... 3-9

Appendix A
Technical Support Resources

Index

© National Instruments Corporation vii Getting Started with Measurement Studio for Visual C++

About This Manual

This manual provides installation and system requirement information as
well as basic information you need to get started with Measurement Studio
for Visual C++. For more detailed information about Measurement Studio
for Visual C++, refer to the Visual C++ section in the Measurement Studio
Reference and the associated application notes on NI Developer Zone
at www.zone.ni.com.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, functions, parameters, operations, variables, filenames and
extensions, and code excerpts.

monospace bold Bold text in this font emphasizes lines of code that are different from the
other examples.

About This Manual

Getting Started with Measurement Studio for Visual C++ viii ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• Measurement Studio Reference available from Start»Programs»
National Instruments»Measurement Studio»Help»Measurement
Studio Reference.

• Related application notes, which you can find at www.zone.ni.com.

• MSDN, which is located at www.msdn.microsoft.com.

© National Instruments Corporation 1-1 Getting Started with Measurement Studio for Visual C++

1
National Instruments
Measurement Studio
for Visual C++

Measurement Studio for Visual C++ is a collection of tools designed
specifically for engineers and scientists building virtual instrumentation
systems using Microsoft’s Visual C++ development environment. With
integrated C++ libraries for acquiring, analyzing, and displaying data,
Measurement Studio for Visual C++ has everything you need for building
advanced measurement and automation applications. Whether you are
building automated test systems or monitoring applications or laboratory
experiments, Measurement Studio for Visual C++ simplifies your
development tasks.

System Requirements
This section outlines the minimum system requirements as well as the
recommended system requirements for installing Measurement Studio for
Visual C++.

Tip Be aware that installing the entire Measurement Studio Full Development System
includes Measurement Studio for Visual Basic, Measurement Studio for Visual C++, and
Measurement Studio LabWindows/CVI. Refer to the list below for information about the
amount of disk space needed for each type of installation.

• Pentium 133 MHz (Pentium 266 MHz or higher recommended)

• 32 MB RAM (64 MB recommended)

• 132 MB free disk space

• Windows 2000/NT/Me/9x

– Windows 95 DCOM 1.2 or later

– Windows NT Service Pack 3 or later

• Microsoft Visual C++ 6.0 and Service Pack 3 or later

Chapter 1 National Instruments Measurement Studio for Visual C++

Getting Started with Measurement Studio for Visual C++ 1-2 ni.com

Note You must install Microsoft Visual C++ Service Pack 3 or later before you install
Measurement Studio for Visual C++. You can download the latest service pack from
Microsoft from the site listed below.

msdn.microsoft.com/vstudio/sp

After you install Microsoft Visual Studio/C++, you must run it at least once before you
install Measurement Studio. When you run Visual Studio the first time, it creates registry
entries that Measurement Studio requires to install correctly.

Installing
To install Measurement Studio for Visual C++, insert the Measurement
Studio CD into your CD ROM drive. If the CD does not automatically run,
open Windows Explorer, right click on the CD ROM drive, select
AutoPlay, and follow the directions to install Measurement Studio for
Visual C++.

Installation Tips
• You must be logged with administrator privileges when installing

Measurement Studio for Visual C++ on a Windows 2000 machine.

• By default, Measurement Studio for Visual C++ installs in
c:\Program Files\National Instruments\

MeasurementStudio\VC.

• Restart your system before you use Measurement Studio for Visual
C++ to ensure that all components are initialized properly.

• If you have any component of Measurement Studio and NI-DAQ 6.7
or earlier installed on your machine and you then install LabVIEW 6.0
on the same machine, the LabVIEW installer removes NI-DAQ
support for Measurement Studio. To restore NI-DAQ support for
Measurement Studio, you must download and install NI-DAQ
version 6.8 or later. To download NI-DAQ, go to www.ni.com and
search for NI-DAQ 6.8 or later.

Measurement Studio for Visual C++ Overview
Measurement Studio for Visual C++ includes C++ classes, ActiveX
controls, and wizards that allow you to build virtual instrumentation and
industrial automation applications using Microsoft’s Visual C++
development environment. Measurement Studio for Visual C++ takes
advantage of COM and ActiveX technologies to deliver a set of integrated

Chapter 1 National Instruments Measurement Studio for Visual C++

© National Instruments Corporation 1-3 Getting Started with Measurement Studio for Visual C++

development tools and an interactive design approach for developing
measurement systems in Visual C++. The Measurement Studio MFC
AppWizard helps you design your system by automating the design of your
application. Because Measurement Studio for Visual C++ interfaces to
measurement hardware, analysis, and user interface components through
C++ classes, Measurement Studio for Visual C++ is easy to learn for
anyone familiar with Visual C++.

Measurement Studio for Visual C++ Classes
The Measurement Studio for Visual C++ classes are organized into
components. The components contain class header files, inline
implementation files, and static library files in both Debug and Release
versions.

The componentized structure of the Measurement Studio classes provides
the benefits listed below.

• Minimizes the number of Measurement Studio header files that you
include in your project.

• Allows you to easily add Measurement Studio support to any MFC
project.

• Allows you to easily add components and drivers to your projects
during development.

Table 1-1 includes a description of each component.

Table 1-1. Measurement Studio for Visual C++ Components

Component Description

3D Graph The 3D Graph component includes classes that encapsulate the interfaces
to the Measurement Studio ActiveX 3D Graph control. You use this
component to include 3D graphing and data visualization in your
applications.

488.2 The 488.2 component includes classes that encapsulate the National
Instruments General Purpose Interface Bus (GPIB) driver software. Use
the 488.2 component to include instrument control and GPIB bus control
in your applications.

Chapter 1 National Instruments Measurement Studio for Visual C++

Getting Started with Measurement Studio for Visual C++ 1-4 ni.com

Analysis You use the Analysis component to perform the types of analysis listed
below.

• Linear Algebra

• Frequency and Time Domain Analysis

• Signal Generation

• Digital Filtering

• Waveform Measurement Functions

• Curve Fitting

• Statistics

• Peak Detection

Note: The types of analysis available with the Analysis component differ
depending on if you have purchased the Measurement Studio Full
Development System or the Measurement Studio Base Package. The list
above applies only to the Measurement Studio Full Development System.

Common The Common component includes classes that you use in conjunction with
other Measurement Studio components. This primarily includes the data
type classes such as CNiReal64Vector that you use to store your
application data.

DataSocket The DataSocket component includes classes that encapsulate the interfaces
to National Instruments DataSocket. You use the DataSocket component to
enable your applications to transfer live measurement data over the Internet
or between applications on the same computer.

LVReal-Time You use the LabVIEW Real-Time component to read to and write from
shared memory on a LabVIEW Real-Time Series processor board. This
allows you to pass data between LabVIEW RT VIs and your Measurement
Studio for Visual C++ application.

NI-Reports The NI-Reports component includes classes that encapsulate the interfaces
to the National Instruments NI-Reports ActiveX Automation server. You
use NI-Reports to add report generation functionality to your applications.

UI You use the UI component to add user interface controls to your
application. The Measurement Studio User Interface ActiveX controls
include graphs, slides, knobs, numeric edit boxes, and buttons.

Table 1-1. Measurement Studio for Visual C++ Components (Continued)

Component Description

Chapter 1 National Instruments Measurement Studio for Visual C++

© National Instruments Corporation 1-5 Getting Started with Measurement Studio for Visual C++

Table 1-2 lists the header files and static library files associated with each
Measurement Studio for Visual C++ component, in addition to information
regarding dependencies between components.

Utility The Utility component includes miscellaneous classes that encapsulate and
enhance system functionality. For example, this component includes a
class that encapsulates a multimedia timer, a class that extends the MFC
standard file I/O class, and a class that encapsulates the system tray icon
Win32 API.

VISA The VISA component includes classes that encapsulate the National
Instruments VISA driver software. Use the VISA component to include
I/O through a variety of interfaces in your application. You can use the
VISA component to communicate with PXI, RS-232 (serial), GPIB,
TCPIP, and VXI devices and controllers.

Table 1-2. Measurement Studio for Visual C++ Component Dependencies

Component

Required Static
Library Files

(*.lib) Header Files (*.h)
Required

Components
MFC

Required

3D Graph Ni3DgraphD
Ni3Dgraph
Ni3DgraphSD
Ni3DgraphS

NiGraph3dComponent Common
UI Common

Yes

488.2 Ni4882D
Ni4882
Ni4882SD
Ni4882S

Ni4882Component Common Yes

Analysis NiMathD
NiMath
NiMathSD
NiMathS

NiMathComponent Common Yes

Common NiCommonD
NiCommon
NiCommonSD
NiCommonS

NiCommonComponent — Yes

Table 1-1. Measurement Studio for Visual C++ Components (Continued)

Component Description

Chapter 1 National Instruments Measurement Studio for Visual C++

Getting Started with Measurement Studio for Visual C++ 1-6 ni.com

DataSocket NiDataSocketD
NiDataSocket
NiDataSocketSD
NiDataSocketS

NiDataSocketComponent Common Yes

LVReal-Time NiLVRealTimeD
NiLVRealTime

NiLVRealtimeComponent Common No

NI-Reports NiReportsD
NiReports
NiReportsSD
NiReportsS

NiReportsComponent Common Yes

UI NiUID
NiUI
NiUISD
NiUIS

NiUIComponent Common
UI Common

Yes

UI Common NiUICommonD
NiUICommon
NiUICommonSD
NiUICommonS

NiUICommonComponent Common Yes

Utility NiUtilityD
NiUtility
NiUtilitySD
NiUtilityS

NiUtilityComponent Common Yes

VISA NiVisaD
NiVisa
NiVisaSD
NiVisaS

NiVisaComponent Common Yes

“D”— indicates that the library file is linked to the DLL, Debug version of MFC.

“SD”— indicates the library file is linked to the static, Debug version of MFC.

“S”— indicates the library file is linked to the static, Release version of MFC.

No Suffix — indicates the library file is linked to the DLL, Release version of MFC.

The “SD” and “S” suffixes apply to all components except the LVRealTime component.

Table 1-2. Measurement Studio for Visual C++ Component Dependencies (Continued)

Component

Required Static
Library Files

(*.lib) Header Files (*.h)
Required

Components
MFC

Required

Chapter 1 National Instruments Measurement Studio for Visual C++

© National Instruments Corporation 1-7 Getting Started with Measurement Studio for Visual C++

Exception Classes
Measurement Studio for Visual C++ includes exception classes that derive
from CException. When you use the Measurement Studio for Visual C++
exception classes, you use the ReportError function to determine what
exception was thrown by your application.

MFC Inheritance in Measurement Studio Classes
Some of the C++ classes included in Measurement Studio for Visual C++
derive from MFC classes, thereby providing the MFC functionality you
regularly use as a C++ developer. Refer to the Measurement Studio for
Visual C++ Class Hierarchy Chart, which is included in your Measurement
Studio package, for more information. To gain a full understanding of the
functionality of these Measurement Studio classes, you must review the
appropriate MFC class functionality.

Measurement Studio for Visual C++ ActiveX Controls
ActiveX controls are reusable software components that you can use within
any ActiveX control container to maximize software reuse, increase
productivity, and improve the quality of your applications. Measurement
Studio for Visual C++ includes a set of user interface ActiveX control sand
C++ classes that provide programmatic access to the ActiveX controls. The
C++ classes use Visual C++-native data types and data types that
Measurement Studio defines. The UI and 3D Graph components include
ActiveX controls that you can use in your Measurement Studio for Visual
C++ applications to create a professional, easy-to-use user interface. Refer
to Chapter 2, Getting Started with ActiveX Controls, and Chapter 3,
Measurement Studio for Visual C++ Tutorial, for more information about
how the Measurement Studio for Visual C++ ActiveX controls are
designed and how to use them in your applications.

Chapter 1 National Instruments Measurement Studio for Visual C++

Getting Started with Measurement Studio for Visual C++ 1-8 ni.com

Measurement Studio for Visual C++ Wizards
Measurement Studio for Visual C++ includes several wizards that
streamline your application creation and design by automating the process.
Table 1-3 lists the wizards and describes their functionality.

Table 1-3. Measurement Studio for Visual C++ Wizards

Wizard Description

Measurement
Studio Reference

Topic*

Measurement Studio
AppWizard

The Measurement Studio AppWizard walks you
through creating a project, allowing you to
determine the design, the Measurement Studio for
Visual C++ components to include, how to
include the MFC libraries, and the MFC classes
you want to use.

Create a New
Measurement Studio
for Visual C++
Application

Measurement Studio
Add/Remove
Components Wizard

The Measurement Studio Add/Remove
Components Wizard allows you to add and
remove components from your Measurement
Studio projects as well as add Measurement
Studio support/components to MFC-based
projects that do not already use Measurement
Studio classes.

Add/Remove
Components from
My Measurement
Studio Projects

Measurement Studio
Conversion Wizard

The Measurement Studio Conversion Wizard
allows you to convert Measurement Studio for
Visual C++ version 1.0 projects to version 6.0.
This wizard can save a backup copy of your
version 1.0 project before converting it to
version 6.0.

Convert My
Measurement Studio
Projects from
Version 1.0 to
Version 6.0

Measurement Studio
Preferences Wizard

The Measurement Studio Preferences Wizard
allows you to customize how Measurement
Studio wizards function.

Set My Measurement
Studio Project
Preferences

* To open the Measurement Studio Reference, click Start»Programs»National Instruments»Measurement
Studio»Help»Measurement Studio Reference. To navigate to the Measurement Studio Reference topics listed above,
click Visual C++ Help»General Information»How do I...? and click on the appropriate topic.

© National Instruments Corporation 2-1 Getting Started with Measurement Studio for Visual C++

2
Getting Started with ActiveX
Controls

This chapter contains introductory information about ActiveX controls and
how Measurement Studio for Visual C++ uses them.

What Is an ActiveX Control?
ActiveX controls are reusable software components that can be used within
any ActiveX control container to maximize software reuse, increase
productivity, and improve the quality of programs. Measurement Studio for
Visual C++ includes a set of user interface ActiveX controls. In addition to
the ActiveX controls, Measurement Studio for Visual C++ includes C++
classes that provide programmatic access to the ActiveX controls. The C++
classes use Visual C++ native datatypes and datatypes that Measurement
Studio defines. These datatypes are easier to use in C++ than ActiveX
datatypes such as VARIANT and SAFEARRAY. Measurement Studio for
Visual C++ provides the CNiVariant class to make it easier to use the
ActiveX datatypes when you cannot avoid using variants.

An ActiveX control contains objects, properties, methods, and events,
which you modify, call, and define to take advantage of the control’s
functionality in your program.

• Objects are components of the ActiveX control that are organized
hierarchically. Objects work together to create the functionality of the
ActiveX control. Collections are objects that manage groups of objects
of another type. Refer to the What Are Objects? section for more
information about objects and collections.

• Properties define attributes of a control, such as the way a control
looks on the dialog or the initial state of the control when you run the
program. Refer to the What Are Properties and How Do I Get and Set
Them? section for information about using properties.

• Methods are functions that perform a specific action on or with an
object. Refer to the What Are Methods and How Do I Call Them?
section for information about calling methods.

Chapter 2 Getting Started with ActiveX Controls

Getting Started with Measurement Studio for Visual C++ 2-2 ni.com

• Events are notifications that an ActiveX control generates in response
to some particular occurrence in the program, such as a mouse click on
a button. Refer to the What Are Events and How Do I Respond to
Them? section for information about defining event handlers.

What Are Objects?
An ActiveX control is composed of objects. Objects work together
hierarchically to provide the functionality of the control. For example, in a
knob control, each pointer, label, and value pair you see on the knob is an
ActiveX control object. As shown in the illustration below, the set of ticks
on the knob is also an object. Each object contributes to the functionality of
the entire knob. The pointer objects define the current value or values of
each knob. Label and value pair objects describe the pointer positions by
number or name. Ticks help you determine the position of the pointers.

Figure 2-1. Knob Controls

By manipulating individual objects on the control, you can create different
configurations. In Figure 2-1, Knob A uses a standard numerical scale from
0 to 10, while Knob B uses three value pairs instead, where Low equals 0,
Medium equals 5, and High equals 10. Knob A has two pointers, and Knob
B has a single pointer. Notice the subtle differences in appearance as well.
Knob A has ticks, while Knob B does not. Knob A has three-dimensional

1 Caption
2 Value Pairs

3 Pointers
4 Ticks

5 Labels

5

4 3

2

1

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-3 Getting Started with Measurement Studio for Visual C++

pointers, and Knob B has a thin pointer. To manipulate an individual object,
you must obtain a reference to it through the control hierarchy.

Tip The ClassView in Visual C++ lists the methods and properties associated with each
class. You can find additional information about these classes and their methods by
clicking Tools»Measurement Studio Reference in the Visual C++ environment.

Working with Collections
A collection is a software object that manages a set of objects of the same
type. For example, you might need two pointers on a knob or more than one
X axis on a graph. You might want to assign different styles to each object,
including different styles on a pointer or different minimums and
maximums, ticks, and labels on an axis. Use the Item method of the
collection class to access an object in the collection, such as a
CNiPointer. For example m_knob1.Pointers returns a reference to a
CNiPointers collection, and m_knob1.Pointers.Item(1) returns a
reference to the first CNiPointer object in the collection.

Managing Collections
You can add or remove individual objects from a collection with the syntax
shown below.

//Add a new pointer to the Knob.

m_knob1.Pointers.Add();

//Remove the second pointer on the Knob.

m_knob1.Pointers.Remove(2);

//Remove all pointers on the Knob.

m_knob1.Pointers.RemoveAll();

What Are Properties and How Do I Get and Set Them?
A property is an attribute of a control. Properties of a control define how
the control looks or behaves in your user interface. For example, you can
customize a button to resemble several different styles of Boolean user
interface objects, such as a pushbutton, switch, or LED. Properties also can
describe the current state of the control. For example, you can set the value
of a Boolean button to on or off. You can set properties through property
pages when you design your program, or you can get and set properties
programmatically if you want to evaluate or change a property at runtime.

Chapter 2 Getting Started with ActiveX Controls

Getting Started with Measurement Studio for Visual C++ 2-4 ni.com

All Measurement Studio user interface controls have property pages that
you can use to directly set the ActiveX control’s properties while you are
designing your program. The property values you select during design
dictate the state of the control when you first run your program. However,
if you need to change property values during program execution, you can
use the Measurement Studio C++ classes to get and set the properties
programmatically.

You can set control properties in the property pages after you place the
control on a dialog. To access the control property pages, right click on the
control and select Properties. The Measurement Studio user interface
property pages include a preview window so that as you modify a property,
you can see how it affects the look of your control.

Tip To prevent the preview image from disappearing when you click on it, toggle the
pushpin in the upper left corner of the Properties dialog box.

Figure 2-2 shows the Measurement Studio custom property pages for the
Knob control, along with the preview window.

Figure 2-2. Knob Control Property Pages

Changing Properties Programmatically
Property pages provide a quick and easy way to set properties. Although
you can use property pages during design to set initial control properties,
you cannot access the property pages during program execution. You use
the Measurement Studio for Visual C++ classes to change properties
during program execution to respond to user or program events. For
example, you might want to change the state of an LED indicator during

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-5 Getting Started with Measurement Studio for Visual C++

program execution from false to true depending on the state of an assembly
line. When the assembly line is moving, you set the state of the LED to true,
and when the assembly line stops, you set the LED to false. When the line
starts again, you set the LED to true again.

To access a control and its properties programmatically, first use the
ClassWizard to create a member variable. Right click on the dialog and
select ClassWizard, then choose the Member Variable tab. This dialog
box lists the controls with their IDs and allows you to assign variable names
to the controls. You use the variable in the code to access all the properties
and methods of the control. To access a property programmatically, use the
control member variable name and the property in dot notation, as shown
below.

m_control.Value = value;

Objects are components of the control that are organized hierarchically and
work together to create the functionality of the ActiveX control. Some
controls consist of several layers of objects, and one object can access
another object through a method with the syntax shown below.

control.object.Property

For example, you can access the CNiAxis object from the CNiKnob object
with the Axis property. To get the minimum value of the axis, use the
syntax shown below.

minimum = m_knob1.Axis.Minimum;

In this example, the minimum value of the axis on the knob is read and
stored in a variable named minimum. m_knob1 is the member variable
name for the control, Axis is the property that accesses the CNiAxis
object, and Minimum is the property that returns the minimum value for the
CNiAxis object.

Using Enumerated Constants
You use enumerated constants when the datatype of the parameter or
property is an enumerated datatype. For example, cursor crosshair styles
include specific styles that have been predefined and only these predefined
styles are valid. The best place to find a list of valid enumerated constants
is Tools»Measurement Studio Reference under the appropriate property,
which is CNiCursor::CrossHairSize in this case. The code to set the
cursor style to a minor x is shown below.

m_Graph.Cursors.Item(1).CrosshairStyle = CNiCursor::CrosshairMinorX;

Chapter 2 Getting Started with ActiveX Controls

Getting Started with Measurement Studio for Visual C++ 2-6 ni.com

What Are Methods and How Do I Call Them?
A method is a function the control provides that you call to perform an
action, such as plotting data on a graph.

Calling Methods
The following syntax shows you how to call a simple method that does not
require parameters.

control.Method();

If the method accepts parameters, use the following syntax, listing the
necessary parameters.

control.Method(parameter1, parameter2);

If the method returns a value and you want to save the result, add a variable
to store the return value as shown below.

result = control.Method(parameter1, parameter2);

The following example calls a method with multiple parameters.

m_Graph.PlotY(wave, xFirst, xInc);

Some parameters have default values. if you choose to use a parameter’s
default value, it is not necessary to provide an explicit value for that
parameter when you call the method.

Tip The Intellisense tooltip shows the parameter’s default values, if applicable. The
illustration below shows the CNiMath::ButterworthBandPassmethod. Notice that the
order parameter has a default value. If you omit this value when you call the method, the
method uses the default value when it executes.

CNiMath::ButterworthBandPass(

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-7 Getting Started with Measurement Studio for Visual C++

What Are Events and How Do I Respond to Them?
An event is a notification that an ActiveX control generates in response to
some particular occurrence in the program, such as a mouse click on a user
interface button or a change in the value of a knob. Events exist so that you
can define the function your program executes when that event occurs. You
use the Message Maps tab of the ClassWizard to associate a function with
an event. Every time a particular event occurs, your event handler executes
to process the event.

To develop an event handler for an ActiveX control in Visual C++, right
click on the dialog and select ClassWizard. The Message Maps tab allows
you to select the control and the event that you want to handle and the
ClassWizard generates skeleton code for that event. You can double click
on the control to generate skeleton code for the default event of the control.

The event skeleton function includes the control name, the event name, and
any parameters that are passed to the event handler. The following code is
an example of the event handler that ClassWizard generates to handle the
CNiKnob class’s OnPointerValueChanged event, which occurs when
the user changes the value of the knob.

void CProjectDlg::OnPointerValueChangedCwknob(long Pointer,

VARIANT FAR* Value)

{

// TODO: Add your control notification handler code here

}

Notice that the event handler has two parameters: Pointer and Value.
Pointer is the index of the pointer that changed and Value is the new
value of the pointer. You can use these parameters in your event handler to
help you process the event. Event handler parameters frequently have
ActiveX datatypes such as VARIANT. Use the CNiVariant class to
simplify accessing these parameters. For example, you can use the Value
parameter to set a member variable named m_data to the new value of the
pointer when it changes, as shown in the example below.

void CProjectDlg::OnPointerValueChangedCwknob(long Pointer,

VARIANT FAR* Value)

{

// m_data is a member variable of type double

m_data = CNiVariant(Value);

}

Chapter 2 Getting Started with ActiveX Controls

Getting Started with Measurement Studio for Visual C++ 2-8 ni.com

How Do I Benefit from Using the Measurement Studio
for Visual C++ ActiveX Controls?

Custom ActiveX controls address your specific industry needs.

• Develop event-driven programs—ActiveX controls are tools for
developing event-driven programs, rather than loop-driven programs.
In event-driven programming, the program is continuously in a ready
state, waiting for events to occur. When an event occurs, the program
responds to it and then waits for the next event to occur. Event-driven
programming saves processor time, requires less code, and enables
you to add new controls with new functionality without rewriting
loop-driven code.

• Easy configuration and use of ActiveX controls—ActiveX controls
deliver an easy-to-use property page interface for configuring controls
during design time; a simplified API for accessing properties,
methods, and events programmatically; and 32-bit performance.
Furthermore, ActiveX controls communicate with Visual C++, so you
can take advantage of your development environment’s features, such
as code completion. Measurement Studio provides C++ classes to
make it easy to access Measurement Studio ActiveX controls natively
within your C++ application.

• Ideal application for Visual C++ users—For those already familiar
with Visual C++, you can use an environment you are comfortable
with, and the class architecture provides a C++ style of programming
to control the ActiveX objects. The optimized compiler of Visual C++
also is an advantage, providing executables that run faster and more
efficiently.

© National Instruments Corporation 3-1 Getting Started with Measurement Studio for Visual C++

3
Measurement Studio for
Visual C++ Tutorial

This tutorial includes step-by-step procedures for using Measurement
Studio user interface controls to add the functionality listed below.

• Graph two sine waves, the amplitudes of which you can set with slides.

• Add an update button that displays the amplitude of the second slide in
a numeric indicator and updates the graph with the plot of the second
slide.

• Programmatically change the color, line style, and line width of the
graphs according to amplitude.

Creating the Dialog Box
Complete the following steps to create the project dialog box and add
controls to it.

1. Open Visual C++, click File»New»Projects, and click
NI Measurement Studio AppWizard.

2. Type Project in Project name.

3. Choose an appropriate Location, such as \Temp.

4. Click OK.

5. Select Measurement MFC Application and click Next.

6. Deselect all components except for the Analysis, Common, and
UI components, then click Next.

Tip The Analysis component name is either Advanced Analysis or Base Analysis,
depending on what type of Measurement Studio installation you have.

7. Click Next to navigate through the wizard, accepting all the defaults,
except on Step 4. On Step 4, disable the About Box option. Be sure to
continue clicking Next until the Next button is no longer available,
then click Finish and OK to complete the setup.

Chapter 3 Measurement Studio for Visual C++ Tutorial

Getting Started with Measurement Studio for Visual C++ 3-2 ni.com

8. In the dialog resource, remove the “TODO: Place dialog controls here”
label by selecting it and pressing <Delete>. Remove the OK and
Cancel buttons in a similar manner.

9. From the bottom, left of the Controls toolbar, drag and drop the slide
and graph controls onto the dialog resource, placing the controls as
shown in Figure 3-1. To resize a control in the dialog resource, select
the control and click and drag a corner of it.

Tip If the Controls toolbar is not visible, right click anywhere in the frame in the Visual
C++ environment and select Controls.

Figure 3-1. Slide and Graph Controls

Chapter 3 Measurement Studio for Visual C++ Tutorial

© National Instruments Corporation 3-3 Getting Started with Measurement Studio for Visual C++

Modifying the Controls
You can set properties of the controls such as the labels, value ranges of
numeric controls, types of cursors, and axis settings interactively through
property pages.

Figure 3-2 shows the dialog as it appears after you complete this section.

Figure 3-2. Slide and Graph Control Property Setup

To set up the dialog resource as shown in Figure 3-2, complete the steps
below.

1. Right click a control and choose Properties to display the control
property pages.

2. For each control, click the General tab. Change the Caption for the
slide control to Dash Dot and delete the caption for the graph.

3. For the graph, click the Plots tab and change the Line style to Dash
Dot.

4. To set the scale of the Y axis, click the Axes tab and select YAxis-1 in
Axes. Click Autoscale to clear the checkbox. Type -10 in Minimum.

5. For the slide, click the Numeric tab and in the Scale section, set the
Minimum to 0 and the Maximum to 5. While you have the slide
control properties displayed, choose the Style tab and select the
3D Vertical Pointer Slide style.

Chapter 3 Measurement Studio for Visual C++ Tutorial

Getting Started with Measurement Studio for Visual C++ 3-4 ni.com

Adding Member Variables for the Controls
You add variables for the controls so that you can set their properties and
call their methods from within your program. Complete the following steps
to add variable names for the controls.

1. Right click anywhere on the dialog, select ClassWizard, and click the
Member Variables tab.

2. Highlight IDC_CWGRAPH1 in Control IDs and click Add Variable.

3. Notice that the member variable name field already contains m_. Type
graph to complete the Member variable name and click OK.

4. Repeat steps 2 and 3, highlighting the slide name in Control IDs and
assigning the variable name m_slide1.

5. Click OK to exit the ClassWizard.

Adding Member Functions for the Controls
You add member functions to the controls to respond to events that the
controls generate. You can use the MFC ClassWizard to add a member
function or you can double click on a control to generate a member function
for it.

1. If the ClassWizard is not open, right click anywhere on the dialog and
select ClassWizard.

2. Click the Message Maps tab and select IDC_CWSLIDE1 in the
Object IDs panel, then select PointerValueChanged from Messages.

3. Click Add Function, and click OK to accept the default name in
Member function name.

4. Click OK to exit the ClassWizard.

5. In the Workspace window of the environment, select FileView.

6. Expand the project files and source files.

7. Double click on ProjectDlg.cpp.

8. Scroll to the bottom of the ProjectDlg.cpp file to see the member
function that the ClassWizard generated.

Chapter 3 Measurement Studio for Visual C++ Tutorial

© National Instruments Corporation 3-5 Getting Started with Measurement Studio for Visual C++

Adding Code to the Project
Now that the skeleton code is complete for your member functions, you
must add code to the project. Complete the following steps to add code to
the event handlers and the member functions.

1. In the ClassView tab in the workspace, find CProjectDlg, right click
on it, and select Add Member Variable. Type CNiReal64Vector
for the Variable Type and m_wave for the Variable Name. Select
Private in Access. You will use this variable to hold sine wave data.
CNiReal64Vector is a Measurement Studio data type that holds an
array of double values.

2. Click OK.

3. To add code to the member function skeleton code, expand the
CProjectDlg item and double click on the OnInitDialog function.

4. Add the bolded code below in the OnInitDialog() function.

///

////

// CProjectDlg message handlers

BOOL CProjectDlg::OnInitDialog()

{

CDialog::OnInitDialog();

// Set the icon for this dialog. The framework does

// this automatically when the application's main

// window is not a dialog.

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon(m_hIcon, FALSE); // Set small icon

// Generate the internal wave vector.

CNiMath::SineWave (m_wave, 100, 1);

// Plot the first sine wave.

m_graph.Plots.Item(1).PlotY(m_wave);

// Initialize the slide value for the appropriate

// amplitude.

m_slide1.Value = 1;

return TRUE;

// return TRUE unless you set the focus to a control

}

Chapter 3 Measurement Studio for Visual C++ Tutorial

Getting Started with Measurement Studio for Visual C++ 3-6 ni.com

5. Add the bolded code to the OnPointerValueChangedCwslide1
function for the slide control. This code changes the sine wave
amplitude when the corresponding slide value changes.

void CProjectDlg::OnPointerValueChangedCwslide1(long

Pointer, VARIANT FAR* Value)

{

// Create a local copy of the sine wave.

CNiReal64Vector temp(m_wave);

// Scale the wave according to the slide value.

temp.Scale(CNiVariant(Value));

// Update the first plot.

m_graph.Plots.Item(1).PlotY(temp);

}

6. Click Build»Build Project.exe, then click Build»Execute
Project.exe to make sure it compiles and runs as expected. Verify that
changing the Dash Dot slide changes the plot on the graph.

Adding More Advanced Features to the Project
The following additions to the project demonstrate how to
programmatically change the color and style of plot lines and how to add a
second slider that you use in combination with a button to update the graph.
The CNiPlot property LineStyle is an enumerated data type. You can
find the set of enumerated constants in two places.

• The help topic for CNiPlot::LineStyle—You can open the help
file directly from Visual C++ by clicking Tools»Measurement Studio
Reference.

• The NiPlot.h file in Visual C++—Choose the FileView tab in the
Workspace, then click Measurement Studio»Include»NiPlot.h.
Alternatively, in the ProjectDlg.cpp file you can right click on
CNiPlot and select Go To Definition Of to display the NiPlot.h
header file.You can find CNiPlot in the
OnPointerValueChangedCwslide1 function definition.

Chapter 3 Measurement Studio for Visual C++ Tutorial

© National Instruments Corporation 3-7 Getting Started with Measurement Studio for Visual C++

1. Add a slide, a Measurement Studio button, and a numedit control to the
project as shown below.

Figure 3-3. Project with Additional UI Controls

2. Experiment with different styles and options until your user interface
matches the one in Figure 3-3. You can use either static text boxes or
the Caption property on the slide control to add the captions to the
slides.

Tip The Update button shown above is based on the Measurement Studio 3D button style,
but you can also use the Visual C++ button style. You must create an event handler for the
button Click event. Refer to the code samples in the following steps for more information.

3. Add member variables for the numedit and slide controls. Refer to the
Adding Member Variables for the Controls section for more
information. Use m_numedit for the numedit control and m_slide2

for the second slide control. Add a member function to handle the
button Click message. Refer to the steps in the Adding Member
Functions for the Controls section for more information.

4. Using the Plots tab in the graph property page, click Add in the Plots
section to add an additional plot to the graph. Change its Line style
color to red.

Chapter 3 Measurement Studio for Visual C++ Tutorial

Getting Started with Measurement Studio for Visual C++ 3-8 ni.com

5. Add the following code to the bottom of the OnInitDialog function
before the final return statement.

// Create a temporary vector initializing it with the

// m_wave member variable. Scale the temporary sine wave

// to have an amplitude of 2. Plot the second sine

// wave.

CNiReal64Vector temp(m_wave);

temp.Scale(2);

m_graph.Plots.Item(2).PlotY(temp);

6. Add the following code to the OnClickCwboolean1 function.

void CProjectDlg::OnClickCwboolean1()

{

// Update the second plot and amplitude numeric

// indicator.

m_numedit.Value = m_slide2.Value;

CNiReal64Vector temp(m_wave);

temp.Scale(m_slide2.Value);

m_graph.Plots.Item(2).PlotY(temp);

}

7. Replace the code in the OnPointerValueChangedCwslide1
function with the bolded code below to change the color of the plots.

void CProjectDlg::OnPointerValueChangedCwslide1(long

Pointer, VARIANT FAR* Value)

{

double dValue = CNiVariant(Value);

// Obtain a reference to the plot to reduce amount

// of typing.

CNiPlot plot = m_graph.Plots.Item(1);

// Create a local copy of the sine wave.

CNiReal64Vector temp(m_wave);

// Scale the wave by the slide's value.

temp.Scale(dValue);

if (dValue < 2)

{

plot.LineColor = CNiColor(0, 0, 255); // blue

plot.LineStyle = CNiPlot::LineSolid;

}

else if (dValue < 4)

{

plot.LineColor = CNiColor(0, 255, 0); // green

plot.LineStyle = CNiPlot::LineDash;

Chapter 3 Measurement Studio for Visual C++ Tutorial

© National Instruments Corporation 3-9 Getting Started with Measurement Studio for Visual C++

}

else

{

plot.LineColor = CNiColor(255, 0, 0); // red

plot.LineStyle = CNiPlot::LineDot;

}

// Plot the new sine wave.

plot.PlotY(temp);

}

Reviewing the Completed Project
Below is a sample of the project as it appears after you have successfully
built it and run it.

Figure 3-4. Final Project

Figure 3-4 shows the project as it appears when you are finished with it.
When you run the project, the Dash Dot slide changes the graph display,
updating the amplitude of the sine wave that is plotted with a dash-dot line.
When you click the Update button, the numedit indicator displays the
current value of the Solid Line slide and the graph displays the updated plot
for which the amplitude reflects the current value of the slide. Also, both
plots are scaled by two.

© National Instruments Corporation A-1 Getting Started with Measurement Studio for Visual C++

A
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com.

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com.

Appendix A Technical Support Resources

Getting Started with Measurement Studio for Visual C++ A-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation I-1 Getting Started with Measurement Studio for Visual C++

Index

Numerics
3D Graph component, 1-3, 1-5
488.2 component, 1-3, 1-5

A
ActiveX controls

adding to dialog boxes, 3-1
benefits, 2-8
collections, 2-3
enumerations, 2-5
events, 2-7
methods, 2-6
objects, 2-2
overview, 2-1
properties, 2-3 to 2-5

Add/Remove Components wizard, 1-8
Analysis component, 1-4, 1-5

using classes, 3-5
AppWizard, 1-8, 3-1

C
calling methods, 2-6
collections, 2-3
Common, 1-4
Common component, 1-4, 1-5
controls

modifying, 3-3
toolbar, 3-2

conventions used in the manual, vii
Conversion wizard, 1-8
customer education, A-1

D
DataSocket component, 1-4, 1-6

E
enumerated, 2-5
enumerated constants, 2-5
events, 2-7
exception classes, 1-7

G
getting properties, 2-3

I
installing

Measurement Studio, 1-2
Item method, 2-3

L
LVReal-Time component, 1-4, 1-6

M
manual

how to use this manual, vii
related manuals, vii

Measurement Studio
Add/Remove Components Wizard, 1-8
AppWizard, 1-8
components, 1-3 to 1-6
Conversion Wizard, 1-8
installing, 1-2
overview, 1-2 to 1-7
Preferences wizard, 1-8
system requirements, 1-1
tutorial, 3-1 to 3-9

member functions, 3-4
member variables, 3-4

Index

Getting Started with Measurement Studio for Visual C++ I-2 ni.com

methods, 2-6, 3-6 to 3-8
ActiveX controls, 2-6

modifying controls, 3-3

N
National Instruments Web support, A-1
NI Developer Zone, A-1
NI-Reports component, 1-4, 1-6

O
overview

ActiveX controls, 1-7, 2-1
Measurement Studio, 1-2
Measurement Studio classes, 1-3
Measurement Studio wizards, 1-8

P
Preferences wizard, 1-8
programmatic changes

properties, 2-4
projects

creating in Measurement Studio for
Visual C++, 3-1

properties
changing programmatically, 2-4, 3-5, 3-8
configuring interactively, 2-4, 3-3
getting, 2-3
setting, 2-3
setting with enumerations, 2-5, 3-8

property pages, 2-4

R
related documentation, viii
responding to events, 2-7

S
setting properties, 2-3
system integration, by National

Instruments, A-1
system requirements, 1-1

T
technical support resources, A-1
tutorial

adding code, 3-5
adding member functions, 3-4
adding member variables, 3-4
completed project, 3-9
creating the dialog box, 3-1
modifying controls, 3-3

U
UI Common component, 1-6
UI component, 1-4, 1-6

using classes, 3-5
Utility component, 1-5, 1-6

V
VISA component, 1-5, 1-6

W
Web support from National Instruments, A-1
Wizards

Add/Remove Components, 1-8
AppWizard, 1-8
Conversion Wizard, 1-8

worldwide technical support, A-2

	Getting Started with Measurement Studio for Visual C++
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corproate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 National Instruments Measurement Studio for Visual C++
	System Requirements
	Installing
	Installation Tips

	Measurement Studio for Visual C++ Overview
	Measurement Studio for Visual C++ Classes
	Table 1-1. Measurement Studio for Visual C++ Components
	Table 1-2. Measurement Studio for Visual C++ Component Dependencies
	Exception Classes
	MFC Inheritance in Measurement Studio Classes

	Measurement Studio for Visual C++ ActiveX Controls
	Measurement Studio for Visual C++ Wizards
	Table 1-3. Measurement Studio for Visual C++ Wizards

	Chapter 2 Getting Started with ActiveX Controls
	What Is an ActiveX Control?
	What Are Objects?
	Figure 2-1. Knob Controls
	Working with Collections
	Managing Collections

	What Are Properties and How Do I Get and Set Them?
	Figure 2-2. Knob Control Property Pages
	Changing Properties Programmatically
	Using Enumerated Constants

	What Are Methods and How Do I Call Them?
	Calling Methods

	What Are Events and How Do I Respond to Them?
	How Do I Benefit from Using the Measurement Studio for Visual C++ ActiveX Controls?

	Chapter 3 Measurement Studio for Visual C++ Tutorial
	Creating the Dialog Box
	Figure 3-1. Slide and Graph Controls

	Modifying the Controls
	Figure 3-2. Slide and Graph Control Property Setup

	Adding Member Variables for the Controls
	Adding Member Functions for the Controls
	Adding Code to the Project
	Adding More Advanced Features to the Project
	Figure 3-3. Project with Additional UI Controls

	Reviewing the Completed Project
	Figure 3-4. Final Project

	Appendix A Technical Support Resources
	Index
	Numerics
	A-M
	N-W

